Charles Explorer logo
🇨🇿

One-tilting classes and modules over commutative rings

Publikace na Matematicko-fyzikální fakulta |
2017

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

We classify 1-tilting classes over an arbitrary commutative ring. As a consequence, we classify all resolving subcategories of finitely presented modules of projective dimension at most 1.

Both these collections are in 1-1 correspondence with faithful Gabriel topologies of finite type, or equivalently, with Thomason subsets of the spectrum avoiding a set of primes associated in a specific way to the ring. We also provide a generalization of the classical Fuchs and Salce tilting modules, and classify the equivalence classes of all 1-tilting modules.

Finally we characterize the cases when tilting modules arise from perfect localizations.