Smart Cyber--Physical Systems (sCPS) are modern CPS systems that are engineered to seamlessly integrate a large number of computation and physical components; they need to control entities in their environment in a smart and collective way to achieve a high degree of effectiveness and efficiency. At the same time, these systems are supposed to be safe and secure, deal with environment dynamicity and uncertainty, cope with external threats, and optimize their behavior to achieve the best possible outcome.
This "smartness" typically stems from highly cooperative behavior, self--awareness, self--adaptation, and selfoptimization. Most of the "smartness" is implemented in software, which makes the software one of the most complex and most critical constituents of sCPS.
As the specifics of sCPS render traditional software engineering approaches not directly applicable, new and innovative approaches to software engineering of sCPS need to be sought. This paper reports on the results of the Second International Workshop on Software Engineering for Smart Cyber--Physical Systems (SEsCPS 2016), which specifically focuses on challenges and promising solutions in the area of software engineering for sCPS.