Charles Explorer logo
🇨🇿

Properties of Mechanically Alloyed W-Ti Materials with Dual Phase Particle Dispersion

Publikace na Matematicko-fyzikální fakulta |
2017

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

W alloys are currently widely studied materials for their potential application in future fusion reactors. In the presented study, we report on the preparation and properties of mechanically alloyed W-Ti powders compacted by pulsed electric current sintering.

Four different powder compositions of W-(3%-7%) Ti with Hf or HfC were prepared. The alloys' structure contains only high-melting-point phases, namely the W-Ti matrix, complex carbide (Ti, W, Hf) C and HfO2 particle dispersion; Ti in the form of a separate phase is not present.

The bending strength of the alloys depends on the amount of Ti added. The addition of 3 wt. % Ti led to an increase whereas 7 wt. % Ti led to a major decrease in strength when compared to unalloyed tungsten sintered at similar conditions.

The addition of Ti significantly lowered the room-temperature thermal conductivity of all prepared materials. However, unlike pure tungsten, the conductivity of the prepared alloys increased with the temperature.

Thus, the thermal conductivity of the alloys at 1300 degrees C approached the value of the unalloyed tungsten.