Ruthenium is a perspective material to be used for XUV mirrors at free-electron laser facilities. Yet, it is still poorly studied in the context of ultrafast laser-matter interaction.
In this work, we present single-shot damage studies of thin Ru films irradiated by femtosecond XUV free-electron laser pulses at FLASH. Ex-situ analysis of the damaged spots, performed by different types of microscopy, shows that the weakest detected damage is surface roughening.
For higher fluences we observe ablation of Ru. Combined simulations using Monte-Carlo code XCASCADE(3D) and the two-temperature model reveal that the damage mechanism is photomechanical spallation, similar to the case of irradiating the target with optical lasers.
The analogy with the optical damage studies enables us to explain the observed damage morphologies.