Charles Explorer logo
🇨🇿

Finitely related algebras in congruence modular varieties have few subpowers

Publikace na Matematicko-fyzikální fakulta |
2018

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

We show that every finite algebra which is finitely related and lies in a congruence modular variety has few subpowers. This result, combined with other theorems, has interesting consequences for the complexity of several computational problems associated to finite relational structures: the constraint satisfaction problem, the primitive positive formula comparison problem, and the learnability problem for primitive positive formulas.

Another corollary is that it is decidable whether an algebra given by a set of relations has few subpowers.