In this paper, rate-independent dissipation is introduced into the phase-field framework for modelling of displacive transformations, such as martensitic phase transformation and twinning. The finite-strain phase-field model developed recently by the present authors is here extended beyond the limitations of purely viscous dissipation.
The variational formulation, in which the evolution problem is formulated as a constrained minimization problem for a global rate-potential, is enhanced by including a mixed-type dissipation potential that combines viscous and rate-independent contributions. Effective computational treatment of the resulting incremental problem of non-smooth optimization is developed by employing the augmented Lagrangian method.
It is demonstrated that a single Lagrange multiplier field suffices to handle the dissipation potential vertex and simultaneously to enforce physical constraints on the order parameter. In this way, the initially non-smooth problem of evolution is converted into a smooth stationarity problem.
The model is implemented in a finite-element code and applied to solve two- and three-dimensional boundary value problems representative for shape memory alloys.