Charles Explorer logo
🇬🇧

Shellability is NP-complete

Publication at Faculty of Mathematics and Physics |
2018

Abstract

We prove that for every d >= 2, deciding if a pure, d-dimensional, simplicial complex is shellable is NP-hard, hence NP-complete. This resolves a question raised, e.g., by Danaraj and Klee in 1978.

Our reduction also yields that for every d >= 2 and k >= 0, deciding if a pure, d-dimensional, simplicial complex is k-decomposable is NP-hard. For d >= 3, both problems remain NP-hard when restricted to contractible pure d-dimensional complexes.