Herein, we report the preparation, characterization and antibacterial evaluation of electrospun polystyrene nanofiber membrane with covalently bonded polyethyleneimine and NO photodonor. The nanofiber membranes were prepared by electrospinning, followed by two-step functionalization of the nanofiber surface by chlorosulfonic acid and then by polyethyleneimine (PEI) with or without NO photodonor.
Nanofiber membranes with PEI and NO photodonor are characterized by a high hydrophilicity, photogeneration of NO radicals and CO2 retention. Due to the photogeneration of highly antibacterial NO radicals, the nanofibers exhibited an efficient antibacterial effect toward Gram-negative Escherichia coli when activated by visible light.
The functionalization of the nanofiber membranes by PEI was responsible for the antibacterial character of the surface of the nanofiber membranes even in the dark, showing low bacteria adherence and the retention of CO2. The combination of the properties of the membranes including also protecting against pathogens passing through the nanofiber membrane suggests that these nanomaterials have a promising broad range of applications in medicine.