Charles Explorer logo
🇬🇧

Effects of Noise-Induced Coherence on the Performance of Quantum Absorption Refrigerators

Publication at Faculty of Mathematics and Physics |
2018

Abstract

We study two models of quantum absorption refrigerators with the main focus on discerning the role of noise-induced coherence on their thermodynamic performance. Analogously to the previous studies on quantum heat engines, we find the increase in the cooling power due to the mechanism of noise-induced coherence.

We formulate conditions imposed on the microscopic parameters of the models under which they can be equivalently described by classical stochastic processes and compare the performance of the two classes of fridges (effectively classical vs. truly quantum). We find that the enhanced performance is observed already for the effectively classical systems, with no significant qualitative change in the quantum cases, which suggests that the noise-induced-coherence-enhancement mechanism is caused by static interference phenomena.