Charles Explorer logo
🇨🇿

DILATION VOLUMES OF SETS OF FINITE PERIMETER

Publikace na Matematicko-fyzikální fakulta |
2018

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

In this paper we analyze the first-order behavior (that is, the right-sided derivative) of the volume of the dilation A circle plus t Q as t converges to 0. Here A and Q are subsets of n-dimensional Euclidean space, A has finite perimeter, and Q is finite.

If Q consists of two points only, x and x + u, say, this derivative coincides up to a sign with the directional derivative of the covariogram of A in direction u. By known results for the covariogram, this derivative can therefore be expressed by the cosine transform of the surface area measure of A.

We extend this result to finite sets Q and use it to determine the derivative of the contact distribution function with finite structuring element of a stationary random set at 0. The proofs are based on an approximation of the indicator function of A by smooth functions of bounded variation.