Charles Explorer logo
🇨🇿

Tuning of Thermoresponsivity of a Poly(2-alkyl-2-oxazoline) Block Copolymer by Interaction with Surface-Active and Chaotropic Metallacarborane Anion

Publikace na Přírodovědecká fakulta, 1. lékařská fakulta |
2018

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

Thermoresponsive nanoparticles based on the interaction of metallacarboranes, bulky chaotropic and surface-active anions, and poly(2-alkyl-2-oxazoline) block copolymers were prepared. Recently, the great potential of metallacarboranes have been recognized in biomedicine and many delivery nanosystems have been proposed.

However, none of them are thermoresponsive. Therefore, a thermoresponsive block copolymer, poly(2-methyl-2-oxazoline)-block-poly(2-n-propyl-2-oxazoline) (PMeOx-PPrOx), was synthesized to encapsulate metallacarboranes.

Light scattering, NMR spectroscopy, isothermal titration calorimetry, and cryogenic TEM were used to characterize all solutions of the formed nanoparticles. The cloud-point temperature (T-CP) of the block copolymer was observed at 30 degrees C and polymeric micelles formed above this temperature.

Cobalt bis(dicarbollide) anion (COSAN) interacts with both polymeric segments. Depending on the COSAN concentration, this affinity influenced the phase transition of the thermoresponsive PPrOx block.

The T-CP shifted to lower values at a lower COSAN content. At higher COSAN concentrations, the hybrid nanoparticles are fragmented into relatively small pieces.

This system is also thermoresponsive, whereby an increase in temperature leads to higher polymer mobility and COSAN release.