Photosystems, the machines of photosynthesis, are highly complex and energetically disordered pigment-protein structures. Yet, they perform their function, be it highly efficient energy transfer and charge separation or the ability to switch between light-harvesting and photoprotective states, extremely well.
In this opinioned review we describe the interplay of disorder and exciton delocalization in photosynthetic light harvesting. By discussing recent research advances on grounds of well-established concepts, we demonstrate that not only is the excitation delocalization a robust phenomenon, but that it in fact enables the light harvesting function in the disordered environment.