Charles Explorer logo
🇬🇧

Learning Audio-Sheet Music Correspondences for Cross-Modal Retrieval and Piece Identification

Publication at Faculty of Mathematics and Physics |
2018

Abstract

This work addresses the problem of matching musical audio directly to sheet music, without any higher-level abstract representation. We propose a method that learns joint embedding spaces for short excerpts of audio and their respective counterparts in sheet music images, using multimodal convolutional neural networks.

Given the learned representations, we show how to utilize them for two sheet-music-related tasks: (1) piece/score identification from audio queries and (2) retrieving relevant performances given a score as a search query. All retrieval models are trained and evaluated on a new, large scale multimodal audio-sheet music dataset which is made publicly available along with this article.

The dataset comprises 479 precisely annotated solo piano pieces by 53 composers, for a total of 1,129 pages of music and about 15 hours of aligned audio, which was synthesized from these scores. Going beyond this synthetic training data, we carry out first retrieval experiments using scans of real sheet musi