Charles Explorer logo
🇨🇿

Large-scale Cosmic-Ray Anisotropies above 4 EeV Measured by the Pierre Auger Observatory

Publikace na Matematicko-fyzikální fakulta |
2018

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

We present a detailed study of the large-scale anisotropies of cosmic rays with energies above 4 EeV measured using the Pierre Auger Observatory. For the energy bins [4, 8] EeV and E >= 8 EeV, the most significant signal is a dipolar modulation in R.A. at energies above 8 EeV, as previously reported.

In this paper we further scrutinize the highest-energy bin by splitting it into three energy ranges. We find that the amplitude of the dipole increases with energy above 4 EeV.

The growth can be fitted with a power law with index beta = 0.79 +/- 0.19. The directions of the dipoles are consistent with an extragalactic origin of these anisotropies at all the energies considered.

Additionally, we have estimated the quadrupolar components of the anisotropy: they are not statistically significant. We discuss the results in the context of the predictions from different models for the distribution of ultrahigh-energy sources and cosmic magnetic fields.