Charles Explorer logo
🇨🇿

HIGHER-ORDER COMPACT EMBEDDINGS OF FUNCTION SPACES ON CARNOT-CARATHEODORY SPACES

Publikace na Matematicko-fyzikální fakulta |
2018

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

A sufficient condition for higher-order compact embeddings on bounded domains in Carnot-Caratheodory spaces is established for the class of rearrangement-invariant function spaces. The condition is expressed in terms of compactness of a suitable 1-dimensional integral operator depending on the isoperimetric function relative to the Carnot-Caratheodory structure of the relevant sets.

The general result is then applied to particular Sobolev spaces built upon Lebesgue and Lorentz spaces.