We present results of the timing performance studies of the optical part and front-end electronics of the time-of-flight subdetector prototype for the ATLAS Forward Proton (AFP) detector obtained during the test campaigns at the CERN-SPS test-beam facility (120 GeV pi(+) particles) in July 2016 and October 2016. The time-of-flight (ToF) detector in conjunction with a 3D silicon pixel tracker will tag and measure protons originating in central exclusive interactions p + p -> p + X + p, where the two outgoing protons are scattered in the very forward directions.
The ToF is required to reduce so-called pileup backgrounds that arise from multiple proton interactions in the same bunch crossing at high luminosity. The background can fake the signal of interest, and the extra rejection from the ToF allows the proton tagger to operate at the high luminosity required for the measurement of the processes.
The prototype detector uses fused silica bars emitting Cherenkov radiation as a relativistic particle passes through them. The emitted Cherenkov photons are detected by a multi-anode micro-channel plate photomultiplier tube (MCP-PMT) and processed by fast electronics. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.