ImportanceAlthough IgA nephropathy (IgAN) is the most common glomerulonephritis in the world, there is no validated tool to predict disease progression. This limits patient-specific risk stratification and treatment decisions, clinical trial recruitment, and biomarker validation.
ObjectiveTo derive and externally validate a prediction model for disease progression in IgAN that can be applied at the time of kidney biopsy in multiple ethnic groups worldwide. Design, Setting, and ParticipantsWe derived and externally validated a prediction model using clinical and histologic risk factors that are readily available in clinical practice.
Large, multi-ethnic cohorts of adults with biopsy-proven IgAN were included from Europe, North America, China, and Japan. Main Outcomes and MeasuresCox proportional hazards models were used to analyze the risk of a 50% decline in estimated glomerular filtration rate (eGFR) or end-stage kidney disease, and were evaluated using the R-D(2) measure, Akaike information criterion (AIC), C statistic, continuous net reclassification improvement (NRI), integrated discrimination improvement (IDI), and calibration plots.
ResultsThe study included 3927 patients; mean age, 35.4 (interquartile range, 28.0-45.4) years; and 2173 (55.3%) were men. The following prediction models were created in a derivation cohort of 2781 patients: a clinical model that included eGFR, blood pressure, and proteinuria at biopsy; and 2 full models that also contained the MEST histologic score, age, medication use, and either racial/ethnic characteristics (white, Japanese, or Chinese) or no racial/ethnic characteristics, to allow application in other ethnic groups.
Compared with the clinical model, the full models with and without race/ethnicity had better R-D(2) (26.3% and 25.3%, respectively, vs 20.3%) and AIC (6338 and 6379, respectively, vs 6485), significant increases in C statistic from 0.78 to 0.82 and 0.81, respectively (Delta C, 0.04; 95% CI, 0.03-0.04 and Delta C, 0.03; 95% CI, 0.02-0.03, respectively), and significant improvement in reclassification as assessed by the NRI (0.18; 95% CI, 0.07-0.29 and 0.51; 95% CI, 0.39-0.62, respectively) and IDI (0.07; 95% CI, 0.06-0.08 and 0.06; 95% CI, 0.05-0.06, respectively). External validation was performed in a cohort of 1146 patients.
For both full models, the C statistics (0.82; 95% CI, 0.81-0.83 with race/ethnicity; 0.81; 95% CI, 0.80-0.82 without race/ethnicity) and R-D(2) (both 35.3%) were similar or better than in the validation cohort, with excellent calibration. Conclusions and RelevanceIn this study, the 2 full prediction models were shown to be accurate and validated methods for predicting disease progression and patient risk stratification in IgAN in multi-ethnic cohorts, with additional applications to clinical trial design and biomarker research.