This paper is concerned with the numerical simulation of time-dependent variably-saturated Darcian flow problems described by the Richards equation. We present the adaptive higher-order space-time discontinuous Galerkin (hp-STDG) method which optimizes accuracy and efficiency by balancing the errors that arise from the space and time discretizations and from the resulting nonlinear algebraic system.
Convergence problems related to the transition between unsaturated flow and saturated flow are eliminated by regularizing the constitutive formulas. We also present an hp-anisotropic mesh adaptation technique capable of generating unstructured triangular elements with optimal sizes, shapes, and polynomial approximation degrees.
Several numerical experiments are presented to demonstrate the accuracy, efficiency, and robustness of the numerical method presented here.