Charles Explorer logo
🇬🇧

Germline CHEK2 Gene Mutations in Hereditary Breast Cancer Predisposition - Mutation Types and their Biological and Clinical Relevance

Publication at First Faculty of Medicine |
2019

Abstract

Background: Hereditary mutations in the CHEK2 gene (which encodes CHK2 kinase) contribute to a moderately increased risk of breast cancer (BC) and other cancers. Large variations in the frequency of CHEK2 mutations and the occurrence of variants of unknown clinical significance (VUS) complicate estimation of cancer risk in carriers of germline CHEK2 mutations.

Patients and methods: We performed mutation analysis of 1,526 high-risk Czech BC patients and 3,360 Czech controls. Functional analysis was performed for identified VUS using a model system based on a human RPE1-CHEK2-KO cell line harboring biallelic inactivation of endogenous CHEK2.

Results: The frequency of ten truncating CHEK2 variants differed markedly between BC patients (2.26%) and controls (0.11%; p = 4.1 x 10-12). We also found 23 different missense variants in 4.5% patients and in 4.0% of controls.

The most common was p.I157T, which was found in patients and controls with the same frequency. Functional analysis identified nine functionally deleterious VUS, another nine functionally neutral VUS, and four intermediate VUS (including p.I157T).

We found that carriers of truncating CHEK2 mutations had a high BC risk (OR 8.19; 95% CI 4.11-17.75), and that carriers of functionally deleterious missense variants had a moderate risk (OR 4.06; 95% CI, 1.37-13.39). Carriers of these mutations developed BC at 44.4 and 50.7 years, respectively.

Functionally neutral and functionally intermediate missense variants did not increase the BC risk. BC in CHEK2 mutation carriers was frequently ER-positive and of higher grade.

Notably, carriers of CHEK2 mutations developed second cancers more frequently than BRCA1/BRCA2/PALB2/p53 or mutation non-carriers. Conclusion: Hereditary CHEK2 mutations contribute to the development of hereditary BC.

The associated cancer risk in mutation carriers increases with the number of affected individuals in a family. Annual follow-up with breast ultrasound, mammography, or magnetic resonance imaging is recommended for asymptomatic mutation carriers from the age of 40.

Surgical prevention and specific follow-up of other tumors should be considered based on family cancer history.