What makes a computational problem easy (e.g., in P, that is, solvable in polynomial time) or hard (e.g., NP-hard)? This fundamental question now has a satisfactory answer for a quite broad class of computational problems, so called fixed-template constraint satisfaction problems (CSPs) -- it has turned out that their complexity is captured by a certain specific form of symmetry. This paper explains an extension of this theory to a much broader class of computational problems, the promise CSPs, which includes relaxed versions of CSPs such as the problem of finding a 137-coloring of a 3-colorable graph.