Background: The gut microbiome and metabolome may significantly influence clinical outcomes in patients with short bowel syndrome (SBS). The study aimed to describe specific metagenomic/metabolomics profiles of different SBS types and to identify possible therapeutic targets.
Methods: Fecal microbiome (FM), volatile organic compounds (VOCs), and bile acid (BA) spectrum were analyzed in parenteral nutrition (PN)-dependent SBS I, SBS II, and PN-independent (non-PN) SBS patients. Results: FM in SBS I, SBS II, and non-PN SBS shared characteristic features (depletion of beneficial anaerobes, high abundance of Lactobacilaceae and Enterobacteriaceae).
SBS I patients were characterized by the abundance of oxygen-tolerant microrganisms and depletion of strict anaerobes. Non-PN SBS subjects showed markers of partial FM normalization.
FM dysbiosis was translated into VOC and BA profiles characteristic for each SBS cohort. A typical signature of all SBS patients comprised high saturated aldehydes and medium-chain fatty acids and reduced short-chain fatty acid (SCFA) content.
Particularly, SBS I and II exhibited low protein metabolism intermediate (indole, p-cresol) content despite the hypothetical presence of relevant metabolism pathways. Distinctive non-PN SBS marker was high phenol content.
SBS patients' BA fecal spectrum was enriched by chenodeoxycholic and deoxycholic acids and depleted of lithocholic acid. Conclusions: Environmental conditions in SBS gut significantly affect FM composition and metabolic activity.
The common feature of diverse SBS subjects is the altered VOC/BA profile and the lack of important products of microbial metabolism. Strategies oriented on the microbiome/metabolome reconstitution and targeted delivery of key compounds may represent a promising therapeutic strategy in SBS patients.