Charles Explorer logo
🇨🇿

Seismic structure beneath the Reykjanes Peninsula, southwest Iceland, inferred from array-derived Rayleigh wave dispersion

Publikace na Matematicko-fyzikální fakulta |
2019

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

The aim is to obtain a site-specific S-wave structure beneath the Reykjanes Peninsula, southwest Iceland. Nine broadband stations of the Reykjanet network are used to find Rayleigh-wave phase velocity dispersion in a relatively wide range of periods (from 3 to 50 s).

The records analyzed were made in the years 2013 to 2015 and concern fourteen selected earthquakes whose epicentral distances range from tens of kilometers to almost ten thousand kilometers. Our approach to retrieving Rayleigh phase velocity dispersion involves two partly independent methods allowing for array apertures larger than a wavelength: 1) the zero-crossing point method, and 2) the phase-plane method.

The two methods used here work with seismograms decomposed into quasi-harmonic components and implicitly assume a single plane wave propagation. The good match between the dispersion curves obtained by means of the two methods indicates that the assumption has been reasonably fulfilled.

The Rayleigh wave phase velocity dispersion data are inverted into a horizontally layered isotropic S wave velocity model of the Earth's crust and uppermost mantle by a modified method of the single-parameter variation. At shallow depths, the derived model is rather similar to some previous models that were derived predominantly from the arrival times of body waves.

At depths exceeding about 20 km, the dispersion data require low S-wave velocities, indicating a noticeable low-velocity zone.