Within the frame of the dynamic pH junction preconcentration technique in capillary electrophoresis, we introduce a novel approach based on the use of the pH boundary of a system zone for the preconcentration of general, multivalent, weak analytes in a system of binary, uni-univalent, background electrolytes (BGE). For such purpose, in addition to presenting a comprehensive flowchart for the development of a method for BGE preconcentration, we showed several model cases using acidic, basic and ampholytic analytes.
Furthermore, we combined the flowchart with calculations in electrophoretic software PeakMaster to determine all necessary information such as analyte mobility, system zones and the amplitude of the pH boundary of a system zone as a function of the sample matrix. For an even more detailed understanding of the process, we also investigated changes in the pH boundary through computer simulations with Simul 5, providing an in-depth characterization of all model analytes according to the steps of the flowchart and to PeakMaster calculations for experimental verification of the final BGE preconcentration.