Charles Explorer logo
🇨🇿

Microstructure and Mechanical Properties of Sintered and Heat-Treated HfNbTaTiZr High Entropy Alloy

Publikace na Matematicko-fyzikální fakulta |
2019

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

High entropy alloys (HEAs) have attracted researchers' interest in recent years. The aim of this work was to prepare the HfNbTaTiZr high entropy alloy via the powder metallurgy process and characterize its properties.

The powder metallurgy process is a prospective solution for the synthesis of various alloys and has several advantages over arc melting (e.g., no dendritic structure, near net-shape, etc.). Cold isostatic pressing of blended elemental powders and subsequent sintering at 1400 degrees C for various time periods up to 64 h was used.

Certain residual porosity, as well as bcc2 (Nb- and Ta-rich) and hcp (Zr- and Hf-rich) phases, remained in the bcc microstructure after sintering. The bcc2 phase was completely eliminated during annealing (1200 degrees C/1h) and subsequent water quenching.

The hardness values of the sintered specimens ranged from 300 to 400 HV10. The grain coarsening during sintering was significantly limited and the maximum average grain diameter after 64 h of sintering was approximately 60 mu m.

The compression strength at 800 degrees C was 370 MPa and decreased to 47 MPa at 1200 degrees C. Porosity can be removed during the hot deformation process, leading to an increase in hardness to similar to 450 HV10.