Surface functionalisations substantially influence the performance of drug delivery vehicles by improving their biocompatibility, selectivity and circulation in bloodstream. Herein, we present the study of in vitro and in vivo behaviour of a highly potent cytostatic alkaloid ellipticine (Elli) encapsulated in internal cavity of ferritin (FRT)-based nanocarrier (hereinafter referred to as FRTElli).
In addition, FRTElli surface was functionalised with three different molecular coatings: two types of protective PAS peptides (10- or 20-residues lengths) with sequences comprising amino acids proline (P), alanine (A) and serine (S) (to form PAS-10-FRTElli or PAS-20-FRTElli, respectively), or polyethylene glycol (PEG-FRTElli). All three surface modifications of FRT disposed sufficient encapsulation efficiency of Elli with no premature cumulative release of cargo.
Noteworthy, all tested surface modifications displayed beneficial effects on the in vitro biocompatibility. PAS-10-FRTElli exhibited markedly reduced uptake by macrophages compared to PAS-20-FRTElli, PEG-FRTElli or unmodified FRTElli.
The exceptional properties of PAS-10-FRTElli were validated by an array of in vitro analyses including formation of protein corona, uptake efficiency or screenings of selectivity of cytotoxicity. In murine preclinical model bearing triple-negative breast cancer (MDA-MB-231) xenograft, compared to free Elli or FRTElli, PAS-10-FRTElli displayed enhanced accumulation of Elli within tumour tissue, while hampering the uptake of Elli into off-target tissues.
Noteworthy, PAS-10-FRTElli led to decreased in vivo complement (C3) activation and protein corona formation. Taken together, presented in vivo results indicate that PAS-10-FRTElli represents a promising stealth platform for translation into clinical settings.