Naturally ventilated livestock buildings (NVLB) represent one of the most significant sources of ammonia emissions. However, even the dispersion of passive gas in an NVLB is still not well understood.
In this paper, we present a detailed investigation of passive pollutant dispersion in a model of a cattle barn using the wind tunnel experiment method. We simulated the pollution of the barn by a ground-level planar source.
We used the time-resolved particle image velocimetry (TR-PIV) and the fast flame ionisation detector (FFID) to study the flow and dispersion processes at high spatial and temporal resolution. We employed the Proper Orthogonal Decomposition (POD) and Oscillating Patterns Decomposition (OPD) methods to detect the coherent structures of the flow.
The results show that the type of atmospheric boundary layer (ABL) and sidewall opening height have a significant impact on the pollutant dispersion in the barn, while the presence of animals and doors openings are insignificant under conditions of winds perpendicular to the sidewall openings. We found that the dynamic coherent structures, developed by the Kelvin-Helmholtz instability, contribute to the pollutant transport in the barn.
We demonstrate that in any of the studied cases the pollutant was not well mixed within the barn and that a significant underestimation (up to by a factor 3) of the barn ventilation might be obtained using, e.g. tracer gas method.