It is well known that many problems in interval computation are intractable, which restricts our attempts to solve large problems in reasonable time. This does not mean, however, that all problems are computationally hard.
Identifying polynomially solvable classes thus belongs to important current trends. The purpose of this paper is to review some of such classes.
In particular, we focus on several special interval matrices and investigate their convenient properties. We consider tridiagonal matrices, \M, H, P, Bmatrices, inverse M-matrices, inverse nonnegative matrices, nonnegative matrices, totally positive matrices and some others.
We focus in particular on computing the range of the determinant, eigenvalues, singular values, and selected norms. Whenever possible, we state also formulae for determining the inverse matrix and the hull of the solution set of an interval system of linear equations.
We survey not only the known facts, but we present some new views as well.