The method for assessing the level of nitric oxide (II) (NO) by voltammetric monitoring of nitrite ions was carried out on models M1 and M2 of polarized macrophages induced from monocytes of human peripheral blood with the addition of lipopolysaccharide (LPS) and interleukin-4 (IL-4), respectively. The model of induction of M1 and M2 macrophages was used in the work to achieve the corresponding shifts in the functional status of studied cells.
Ethyl nitrite (EtONO) was used as a standard compound of nitrite ions for electrochemical measurements. Electrochemical determination of nitrite ions was performed by anodic linear sweep voltammetry in the first-order derivative mode (ALSV FOD) in Britton-Robinson (BR) buffer with pH 4.02 on carbon ink modified graphite electrode.
EtONO calibrations were linear over a concentration range from 2 to 9 mu mol L-1 with corresponding regression equation y = 0.768c - 0.048. Limit of detection (LOD) (S/N = 3) was 0.38 mu mol L-1.
The results of the study showed the fundamental possibility of using voltammetry to assess indirectly the production of nitric oxide by cells in supernatants of the monocytic macrophage lineage. The level of nitric oxide metabolites (nitrite ions) in supernatants was associated with the functional state of macrophages.