We present a model for the dynamics of elastic or poroelastic bodies with monopolar repulsive long-range (electrostatic) interactions at large strains. Our model respects (only) locally the non-self-interpenetration condition but can cope with possible global self-interpenetration, yielding thus a certain justification of most of engineering calculations which ignore these effects in the analysis of elastic structures.
These models necessarily combines Lagrangian (material) description with Eulerian (actual) evolving configuration evolving in time. Dynamical problems are studied by adopting the concept of nonlocal nonsimple materials, applying the change of variables formula for Lipschitz-continuous mappings, and relying on a positivity of determinant of deformation gradient thanks to a result by Healey and Kromer.