The death of massive stars is shrouded in many mysteries. One of them is the mechanism that overturns the collapse of the degenerate iron core into an explosion, a process that determines the supernova explosion energy, properties of the surviving compact remnant, and the nucleosynthetic yields.
The number of core-collapse supernova observations has been growing with an accelerating pace thanks to modern time-domain astronomical surveys and new tests of the explosion mechanism are becoming possible. We review predictions of parameterized supernova explosion models and compare them with explosion properties inferred from observed light curves, spectra, and neutron star masses.