The scorpions represent an ancient and morphologically conserved order of arachnids. Despite that, their karyotypes may differ considerably even among closely related species.
In this study, we identify the trends of the karyotype evolution in the family Scorpiopidae based on integrating cytogenetic data and multi-locus molecular phylogenetic approaches. We detected considerable variability in diploid numbers of chromosomes (from 48 to 147), 18S rRNA gene cluster positions (from terminal to pericentromeric) at the interspecific level.
Moreover, we identified independent fusions, fissions and inversions in the evolution of the family Scorpiopidae, leading to a remarkable diversification of the karyotypes. The dynamic system of the karyotype changes in this group is further documented by the presence of interstitial telomeric sequences (ITS) in two species.
The cytogenetic differences observed among the analyzed species highlight the potential of this type of data for species-level taxonomy in scorpion lineages with monocentric chromosomes. Additionally, the results of our phylogenetic analyses support the monophyly of the family Scorpiopidae, but rendered several genera para- or polyphyletic.