Severe neonatal hyperbilirubinemia (SNH) is a serious condition that occurs worldwide. Timely recognition with bilirubin determination is key in the management of SNH.
Visual assessment of jaundice is unreliable. Fortunately, transcutaneous bilirubin measurement for screening newborn infants is routinely available in many hospitals and outpatient settings.
Despite a few limitations, the use of transcutaneous devices facilitates early recognition and appropriate management of neonatal jaundice. Unfortunately, however, advanced and often costly screening modalities are not accessible to everyone, while there is an urgent need for inexpensive yet accurate instruments to assess total serum bilirubin (TSB).
In the near future, novel icterometers, and in particular optical bilirubin estimates obtained with a smartphone camera and processed with a smartphone application (app), seem promising methods for screening for SNH. If proven reliable, these methods may empower outpatient health workers as well as parents at home to detect jaundice using a simple portable device.
Successful implementation of ubiquitous bilirubin screening may contribute substantially to the reduction of the worldwide burden of SNH. The benefits of non-invasive bilirubin screening notwithstanding, any bilirubin determination obtained through non-invasive screening must be confirmed by a diagnostic method before treatment.
Impact Key message: Screening methods for neonatal hyperbilirubinemia facilitate early recognition and timely treatment of severe neonatal hyperbilirubinemia (SNH). Any bilirubin screening result obtained must be confirmed by a diagnostic method.
What does this article add to the existing literature? Data on optical bilirubin estimation are summarized. Niche research strategies for prevention of SNH are presented.
Impact: Transcutaneous screening for neonatal hyperbilirubinemia contributes to the prevention of SNH. A smartphone application with optical bilirubin estimation seems a promising low-cost screening method, especially in low-resource settings or at home.