Charles Explorer logo
🇬🇧

Distinct Responsiveness of Tumor-Associated Macrophages to Immunotherapy of Tumors with Different Mechanisms of Major Histocompatibility Complex Class I Downregulation

Publication at Faculty of Science |
2021

Abstract

Simple Summary Tumor-associated macrophages (TAMs) are one of the major cell subpopulations in the tumor microenvironment (TME) where they can either be pro-tumorigenic or contribute to an anti-tumor immunity. The TME and TAM phenotype were analyzed after combined immuno-therapy (IT) in tumor models characterized by distinct expression of major histocompatibility class I complex (MHC-I) molecules, i.e., tumors induced with TC-1 (MHC-I-proficient), TC-1/A9 (reversibly downregulated), and TC-1/dB2m (irreversibly downregulated) cells.

We found out that combined IT highly activated immune reactions in the TME of TC-1 and TC-1/A9 tumors, but the TME of TC-1/dB2m tumors remained almost unchanged. Correspondingly, TAMs from TC-1/A9 tumors were able to destroy tumor cells in vitro, while TAMs isolated from TC-1/dB2m tumors showed profoundly decreased cytotoxicity.

Hence, various capabilities of TAMs in tumors with distinct expression of MHC-I molecules should be considered when applying IT, particularly IT focused on TAMs. Tumor-associated macrophages (TAMs) plentifully infiltrate the tumor microenvironment (TME), but their role in anti-tumor immunity is controversial.

Depending on the acquired polarization, they can either support tumor growth or participate in the elimination of neoplastic cells. In this study, we analyzed the TME by RNA-seq and flow cytometry and examined TAMs after ex vivo activation.

Tumors with normal and either reversibly or irreversibly decreased expression of major histocompatibility complex class I (MHC-I) molecules were induced with TC-1, TC-1/A9, and TC-1/dB2m cells, respectively. We found that combined immunotherapy (IT), composed of DNA immunization and the CpG oligodeoxynucleotide (ODN) ODN1826, evoked immune reactions in the TME of TC-1- and TC-1/A9-induced tumors, while the TME of TC-1/dB2m tumors was mostly immunologically unresponsive.

TAMs infiltrated both tumor types with MHC-I downregulation, but only TAMs from TC-1/A9 tumors acquired the M1 phenotype upon IT and were cytotoxic in in vitro assay. The anti-tumor effect of combined IT was markedly enhanced by a blockade of the colony-stimulating factor-1 receptor (CSF-1R), but only against TC-1/A9 tumors.

Overall, TAMs from tumors with irreversible MHC-I downregulation were resistant to the stimulation of cytotoxic activity. These data suggest the dissimilarity of TAMs from different tumor types, which should be considered when utilizing TAMs in cancer IT.