Charles Explorer logo
🇨🇿

On Ordered Ramsey Numbers of Tripartite 3-Uniform Hypergraphs

Publikace na Matematicko-fyzikální fakulta |
2021

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

For an integer $k \geq 2$, an \emph{ordered $k$-uniform hypergraph} $\mathcal{H}=(H,0$ such that $$\overline{R}(\mathcal{H},\mathcal{H}) \leq 2^{O(n^{2-\varepsilon})}.$$ In fact, we prove this upper bound for the number $\overline{R}(\mathcal{G},\mathcal{K}^{(3)}_3(n))$, where $\mathcal{G}$ is an ordered 3-uniform hypergraph with $n$ vertices and maximum degree $d$ and $\mathcal{K}^{(3)}_3(n)$ is the ordered complete tripartite hypergraph with consecutive color classes of size $n$. We show that this bound is not far from the truth by proving $\overline{R}(\mathcal{H},\mathcal{K}^{(3)}_3(n)) \geq 2^{\Omega(n\log{n})}$ for some fixed ordered $3$-uniform hypergraph $\mathcal{H}$.