Charles Explorer logo
🇨🇿

The role of chromium in iron-based high-temperature water-gas shift catalysts under industrial conditions

Publikace na Matematicko-fyzikální fakulta |
2021

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

Chromium promotion of iron oxide based water-gas shift (WGS) catalysts prepared via co-precipitation/calcination was investigated. Mossbauer spectroscopy and XRD evidence that chromium is incorporated in the calcined hematite (alpha-Fe2O3) precursor irrespective of the doping level (0-12 wt.%).

CO-TPR shows chromium delays the reduction of hematite and the active magnetite (Fe3O4) phase. WGS activity was evaluated under realistic conditions for 4 days.

Enhanced CO conversion was observed with increased chromium doping. Mossbauer spectra indicate that chromium incorporates into octahedral sites of magnetite and prevents reduction of Fe3+ to Fe2+ during formation of the active phase, leading to an increased Fe3+/Fe2+ ratio in octahedral sites.

The higher Fe3+/Fe2+ ratio did not affect the high CO conversion associated with the structural stabilization mechanism of Cr-doping. Interpretation of the Mossbauer spectra was supported by computational modelling of various chromium and vacancy-doped magnetite structures.

The bulk structure of an in situ prepared chromium-doped high-temperature WGS catalyst is best described as a partially oxidized chromium-doped magnetite phase. No surface effects of Cr-doping were found.