Charles Explorer logo
🇨🇿

Continuum analogs of excited-state quantum phase transitions

Publikace na Matematicko-fyzikální fakulta |
2021

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

Following our work [Phys. Rev.

Lett. 125, 020401 (2020)], we discuss a semiclassical description of one-dimensional quantum tunneling through multibarrier potentials in terms of complex time. We start by defining a complex-extended continuum level density of unbound systems and show its relation to a complex time shift of the transmitted wave.

While the real part of the level density and time shift describes the passage of the particle through classically allowed coordinate regions, the imaginary part is connected with an instantonlike picture of the tunneling through forbidden regions. We describe singularities in the real and imaginary parts of the level density and time shift caused by stationary points of the tunneling potential, and show that they represent a dual extension of excited-state quantum phase transitions from bound to continuum systems.

Using the complex scaling method, we numerically verify the predicted effects in several tunneling potentials.