Charles Explorer logo
🇨🇿

Surface Reactions and Electronic Structure of Carboxylic Acid Porphyrins Adsorbed on TiO2(110)

Publikace na Matematicko-fyzikální fakulta |
2021

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

We studied the coverage- and temperature-dependent proton transfer and self-metalation reactions of tetraphenylporphyrin molecules containing a carboxyl functional group (MCTPP) on rutile TiO2(110) surfaces. Furthermore, we also determined changes in the molecular geometric and electronic structures as a function of coverage and temperature.

The investigation was carried out by means of synchrotron radiation X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure measurements. We found that at a coverage of 0.2 ML, most MCTPP molecules adsorb with the iminic nitrogen atoms protonated; at 0.5 ML, a decrease in the proportion of protonated molecules is observed; and at a monolayer coverage, most molecules are not protonated.

Raising the temperature to above 500 K, where hydroxyl groups recombine to desorb as water, causes a decrease in the number of protonated porphyrin molecules. In roughly the same temperature range, we start to observe the self-metalation of the free-base molecules, which produces flat-lying titanyl porphyrin molecules on the TiO2(110) surface.

This reaction is found to be coverage dependent: For 0.2 ML, it starts above 450 K, and for 1.0 ML, temperatures above 650 K are needed. Metalation shifts the surface state located in the semiconductor band gap to lower energies.

Our results suggest that protonation and self-metalation depend on the proximity of the macrocycle to the surface and show that metalation modifies the molecular occupied and vacant electronic states.