One of the most time-critical challenges for the Natural Language Processing (NLP) community is to combat the spread of fake news and misinformation. Existing approaches for misinformation detection use neural network models, statistical methods, linguistic traits, fact-checking strategies, etc.
However, the menace of fake news seems to grow more vigorous with the advent of humongous and unusually creative language models. Relevant literature reveals that one major characteristic of the virality of fake news is the presence of an element of surprise in the story, which attracts immediate attention and invokes strong emotional stimulus in the reader.
In this work, we leverage this idea and propose textual novelty detection and emotion prediction as the two tasks relating to automatic misinformation detection. We re-purpose textual entailment for novelty detection and use the models trained on large-scale datasets of entailment and emotion to classify fake information.
Our results correlate with the ide