Understanding the effects of temperature and moisture on radial growth is vital for assessing the impacts of climate change on carbon and water cycles. However, studies observing growth at sub-daily temporal scales remain scarce.
We analysed sub-daily growth dynamics and its climatic drivers recorded by point dendrometers for 35 trees of three temperate broadleaved species during the years 2015-2020. We isolated irreversible growth driven by cambial activity from the dendrometer records.
Next, we compared the intra-annual growth patterns among species and delimited their climatic optima. The growth of all species peaked at air temperatures between 12 and 16°C and vapour pressure deficit (VPD) below 0.1 kPa.
Acer pseudoplatanus and Fagus sylvatica, both diffuse-porous, sustained growth under suboptimal VPD. Ring-porous Quercus robur experienced a steep decline of growth rates with reduced air humidity.
This resulted in multiple irregular growth peaks of Q. robur during the year. By contrast, the growth patterns of the diffuse-porous species were always right-skewed unimodal with a peak in June between day of the year 150-170.
Intra-annual growth patterns are shaped more by VPD than temperature. The different sensitivity of radial growth to VPD is responsible for unimodal growth patterns in both diffuse-porous species and multimodal growth pattern in Q. robur.