Current understanding of the mechanisms underlying central nervous system (CNS) injury is limited, and traditional therapeutic methods lack a molecular approach either to prevent acute phase or secondary damage, or to support restorative mechanisms in the nervous tissue. microRNAs (miRNAs) are endogenous, non-coding RNA molecules that have recently been discovered as fundamental and post-transcriptional regulators of gene expression. The capacity of microRNAs to regulate the cell state and function through post-transcriptionally silencing hundreds of genes are being acknowledged as an important factor in the pathophysiology of both acute and chronic CNS injuries.
In this study, we have summarized the knowledge concerning the pathophysiology of several neurological disorders, and the role of most canonical miRNAs in their development. We have focused on the miR-20, the miR-17~92 family to which miR-20 belongs, and their function in the normal development and disease of the CNS.