Charles Explorer logo
🇬🇧

Light-Controlled Ultrafast Magnetic State Transition in Antiferromagnetic-Ferromagnetic van der Waals Heterostructures

Publication at Faculty of Science |
2022

Abstract

Manipulating spin in antiferromagnetic (AFM) materials has great potential in AFM opto-spintronics. Laser pulses can induce a transient ferromagnetic (FM) state in AFM metallic systems but have never been proven in two-dimensional (2D) AFM semiconductors and related van der Waals (vdW) heterostructures.

Herein, using 2D vdW heterostructures of FM MnS2 and AFM MXenes as prototypes, we investigated optically induced interlayer spin transfer dynamics based on real-time time-dependent density functional theory. We observed that laser pulses induce significant spin injection and interfacial atom-mediated spin transfer from MnS2 to Cr2CCl2.

In particular, we first demonstrated the transient FM state in semiconducting AFM-FM heterostructures during photoexcited processes. The proximity magnetism breaks the magnetic symmetry of Cr2CCl2 in heterostructures.

Our results provide a microscopic understanding of optically controlled interlayer spin dynamics in 2D magnetic heterostructures and open a new way to manipulate magnetic order in 2D materials for ultrafast opto-spintronics.