Thermally expanded graphite (TEG) is a promising filler beneficial to electrically conductive materials due to its high electrical conductivity, low density, and cost. In this work, the electrically conductive TEG was prepared by thermal treatment of the expandable graphite in the range of temperatures from 400 to 800 °C in air.
Effects of the temperature treatment on the morphology and chemical structure of TEG were thoroughly characterized. Thermal treatment of the expandable graphite resulted in thermally expanded graphite formation with up to 6 times higher electrical conductivity than the precursor.
Optimal conditions of thermal treatment were established at 600 °C providing material with the highest electrical conductivity, high expansion volume, and a well-ordered and defect-less structure.