Parkinson's disease (PD) has emerged as the second most common form of human neurodegenerative disorders. However, due to the severe side effects of the current antiparkinsonian drugs, the design of novel and safe compounds is a hot topic amongst the medicinal chemistry community. Herein, a convenient peptide method, TBTU (O-(benzotriazole-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate), was used for the synthesis of the amide (E)-N-(2-methylcinnamoyl)-amantadine (CA(2-Me)-Am;
3)) derived from amantadine and 2-methylcinnamic acid. The obtained hybrid was studied for its antiparkinsonian activity in an experimental model of PD induced by MPTP. Mice (C57BL/6,male, 8 weeks old) were divided into four groups as follows: (1) the control, treated with normal saline (i.p.) for 12 consecutive days; (2) MPTP (30 mg/kg/day, i.p.), applied daily for 5 consecutive days; (3) MPTP + CA(2-Me)-Am, applied for 12 consecutive days, 5 days simultaneously with MPTP and 7 days after MPTP; (4) CA(2-Me)-Am +oleanoic acid (OA), applied daily for 12 consecutive days. Neurobehavioral parameters in all experimental groups of mice were evaluated by rotarod test and passive avoidance test. Our experimental data showed that CA(2-Me)-Am in parkinsonian mice significantly restored memory performance, while neuromuscular coordination approached the control level, indicating the ameliorating effects of the new compound. In conclusion, the newly synthesized hybrid might be a promising agent for treating motor disturbances and cognitive impairment in experimental PD.