Charles Explorer logo
🇨🇿

Unique key Horn functions

Publikace na Matematicko-fyzikální fakulta |
2022

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

Given a relational database, a key is a set of attributes such that a value assignment to this set uniquely determines the values of all other attributes. The database uniquely defines a pure Horn function h, representing the functional dependencies.

If the knowledge of the attribute values in set A determines the value for attribute v, then A -> v is an implicate of h. If K is a key of the database, then K -> v is an implicate of h for all attributes v.

Keys of small sizes play a crucial role in various problems. We present structural and complexity results on the set of minimal keys of pure Horn functions.

We characterize Sperner hypergraphs for which there is a unique pure Horn function with the given hypergraph as the set of minimal keys. Furthermore, we show that recognizing such hypergraphs is co-NP-complete already when every hyperedge has size two.

On the positive side, we identify several classes of graphs for which the recognition problem can be decided in polynomial time. We also present an algorithm that generates the minimal keys of a pure Horn function with polynomial delay, improving on earlier results.

By establishing a connection between keys and target sets, our approach can be used to generate all minimal target sets with polynomial delay when the thresholds are bounded by a constant. As a byproduct, our proof shows that the MINIMUM KEY problem is at least as hard as the MINIMUM TARGET SET SELECTION problem with bounded thresholds. (C) 2022 The Author(s).

Published by Elsevier B.V.