Charles Explorer logo
🇨🇿

Plasma technology in antimicrobial surface engineering

Publikace na Matematicko-fyzikální fakulta |
2022

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

The design of advanced materials with superb anti-bacterial efficiency by engineering appropriate surface properties has now become a consolidated strategy to improve the functional properties of polymers, metals, and a variety of biomedical materials. Antimicrobial coatings can create a healthier living and working environment and offer holistic solutions to people with health problems.

This Tutorial will serve as a reference point for scientists pursuing sustainable antimicrobial coatings development, by providing a design framework and a toolbox for enabling plasma-based technologies in additive engineering of new materials. A succinct description of how novel, efficient methods based on non-equilibrium reactive plasma chemistries can be applied to produce sophisticated, high-value advanced coatings with the anti-bacterial or antifungal function will be used to illustrate the utility of plasma methods.

Described plasma-based methods can minimize the process steps and dramatically reduce the use of expensive and hazardous reagents, which is a point of high interest in the development of novel sustainable and green manufacturing processes. The Tutorial aims to provide an overview of the principle and state-of-the-art in plasma technology, which is useful for researchers and broad auditoria of students working in antimicrobial materials development and additive engineering.