Charles Explorer logo

Why don’t people use character-level machine translation?

Publication at Faculty of Mathematics and Physics |


We present a literature and empirical survey that critically assesses the state of the art in character-level modeling for machine translation (MT). Despite evidence in the literature that character-level systems are comparable with subword systems, they are virtually never used in competitive setups in WMT competitions.

We empirically show that even with recent modeling innovations in character-level natural language processing, character-level MT systems still struggle to match their subword-based counterparts. Character-level MT systems show neither better domain robustness, nor better morphological generalization, despite being often so motivated.

However, we are able to show robustness towards source side noise and that translation quality does not degrade with increasing beam size at decoding time.