Charles Explorer logo
🇬🇧

GPT-2-based Human-in-the-loop Theatre Play Script Generation

Publication at Faculty of Mathematics and Physics |
2022

Abstract

We experiment with adapting generative language models for the generation of long coherent narratives in the form of theatre plays. Since fully automatic generation of whole plays is not currently feasible, we created an interactive tool that allows a human user to steer the generation somewhat while minimizing intervention.

We pursue two approaches to long-text generation: a flat generation with summarization of context, and a hierarchical text-to-text two-stage approach, where a synopsis is generated first and then used to condition generation of the final script. Our preliminary results and discussions with theatre professionals show improvements over vanilla language model generation, but also identify important limitations of our approach.