The dysplasia grading of Barrett's esophagus (BE), based on the histomorphological assessment of formalin-fixed, paraffin-embedded (FFPE) tissue, suffers from high interobserver variability leading to an unsatisfactory prediction of cancer risk. Thus, pre-analytic preservation of biological molecules, which could improve risk prediction in BE enabling molecular and genetic analysis, is needed.
We aimed to evaluate such a molecular pre-analytic fixation tool, PAXgene-fixed paraffin-embedded (PFPE) biopsies, and their suitability for histomorphological BE diagnostics in comparison to FFPE. In a ring trial, 9 GI pathologists evaluated 116 digital BE slides of non-dysplastic BE (NDBE), low-grade dysplasia (LGD), high-grade dysplasia (HGD), and esophageal adenocarcinomas (EAC) using virtual microscopy.
Overall quality, cytological and histomorphological parameters, dysplasia criteria, and diagnosis were analyzed. PFPE showed better preservation of nuclear details as chromatin and nucleoli, whereas overall quality and histomorphologic parameters as visibility of basal lamina, goblet cells, and presence of artifacts were scored as equal to FFPE.
The interobserver reproducibility with regard to the diagnosis was best for NDBE and EAC (kappa(F) = 0.72-0.75) and poor for LGD and HGD (kappa(F) = 0.13-0.3) in both. In conclusion, our data suggest that PFPE allows equally confident histomorphological diagnosis of BE and EAC, introducing a novel tool for molecular analysis and parallel histomorphological evaluation.