Charles Explorer logo
🇬🇧

The SAGA histone acetyltransferase module targets SMC5/6 to specific genes

Publication at Faculty of Science |
2023

Abstract

BackgroundStructural Maintenance of Chromosomes (SMC) complexes are molecular machines driving chromatin organization at higher levels. In eukaryotes, three SMC complexes (cohesin, condensin and SMC5/6) play key roles in cohesion, condensation, replication, transcription and DNA repair.

Their physical binding to DNA requires accessible chromatin.ResultsWe performed a genetic screen in fission yeast to identify novel factors required for SMC5/6 binding to DNA. We identified 79 genes of which histone acetyltransferases (HATs) were the most represented.

Genetic and phenotypic analyses suggested a particularly strong functional relationship between the SMC5/6 and SAGA complexes. Furthermore, several SMC5/6 subunits physically interacted with SAGA HAT module components Gcn5 and Ada2.

As Gcn5-dependent acetylation facilitates the accessibility of chromatin to DNA-repair proteins, we first analysed the formation of DNA-damage-induced SMC5/6 foci in the Delta gcn5 mutant. The SMC5/6 foci formed normally in Delta gcn5, suggesting SAGA-independent SMC5/6 localization to DNA-damaged sites.

Next, we used Nse4-FLAG chromatin-immunoprecipitation (ChIP-seq) analysis in unchallenged cells to assess SMC5/6 distribution. A significant portion of SMC5/6 accumulated within gene regions in wild-type cells, which was reduced in Delta gcn5 and Delta ada2 mutants.

The drop in SMC5/6 levels was also observed in gcn5-E191Q acetyltransferase-dead mutant.ConclusionOur data show genetic and physical interactions between SMC5/6 and SAGA complexes. The ChIP-seq analysis suggests that SAGA HAT module targets SMC5/6 to specific gene regions and facilitates their accessibility for SMC5/6 loading.