Charles Explorer logo
🇬🇧

Characteristics of foreshock subsolar compressive structures and their connection to magnetosheath jet-like phenomena

Publication at Faculty of Mathematics and Physics |
2023

Abstract

The turbulent foreshock region upstream of the quasi- parallel bow shock is dominated by waves and reflected particles that interact with each other and create a large number of different foreshock phenomena. The plasma structures with the enhanced magnetic field (Short Large Amplitude Magnetic Structures, SLAMS), and density spikes, named plasmoids, are frequently observed.

They are one of the suggested sources of transient flux enhancements (TFE) or jets in the magnetosheath. Using measurements of the Magnetospheric Multiscale Spacecraft (MMS) and OMNI solar wind database between 2015 and 2018 years, we have found that there is a category of events exhibiting both magnetic field and density enhancements simultaneously and we introduce the term "mixed structure" for them.

Consequently, we divided our set of observations into three groups and present a comparative statistical analysis in the subsolar foreshock. Based on our results and previous research, we discuss their properties, possible origin, occurrence rate under different upstream conditions and their relation to the jets and plasmoids in the magnetosheath.

We suggest that plasmoids and SLAMS are different phenomena created in the foreshock under different upstream conditions and that the enhanced density, rather than magnetic field magnitude, is principal for creation of magnetosheath jets.